Rheology: A Key Parameter for Plug Milling Efficiency

Saad Hamid

Agenda

- Completion Practices in North America
- Coiled Tubing Milling & Cleanouts
 - Challenges
 - Current Practices
- Role of Fluid Rheology
- Case Histories
- Conclusions
- Questions

Completion Practices

Composite Bridge Plugs

- Completion and stimulation flexibility
- Cemented casing/liner
- Verified method
- Perforating and milling cost
- Longer stimulation time

- Multiple stages
- Continuous stimulation
- No cemented liner required
- Restricted wellbore access for re-frac
- Completion intervals pre-planned

The Need To Mill

- Bridge plugs MUST be removed to start production
- Frac Sleeves may stay in hole but balls must flow back
- Frac balls wedge into seats can take as much as 1000 psi differential to remove
- Each seat acts as a down hole choke –
 not significant if only 3-5 stages...
- ... but what if there are 40 stages?
- Can cause significant production impairment (SPE 138322)

Intervention Challenges

- Long Laterals with TD exceeding 5000m.
- Complex well trajectories.
- Sour environment.
- HPHT.
- Ever increasing number of stages.
- Plug / seat / ball materials.

Coiled Tubing Milling

Objectives

- Reach the desired depth
- Mill all plugs
- Circulate out all cuttings to surface
- Leave a clean hole

Challenges

- Lock up
- Insufficient WOB
- Variable cuttings size
- Sand, Metal, rubber etc.
- Higher Pump Rates
- Higher HP requirement
- Coiled Tubing Size
- Coiled Tubing Fatigue...

Project Economics

Current Practices

- Pump FR to reduce friction pressure.
- Pump gel sweeps to carry cuttings.
- Perform wiper trips every
 2-4 plugs milled to
 transport solids to vertical
- Stuck Pipes
- Insufficient hole cleaning.
- Subsequent venturi runs.

Are we REALLY doing it right?

- Current practices came from vertical wells and drilling rig techniques
- In horizontals, solids settle out no matter WHAT is pumped
- Higher pump rates and pipe rotation allow rigs to re-entrain solids
- CT does not rotate, need turbulence to re-entrain solids:
 higher rates, lower viscosities or wiper trips

Understanding Solids Transportation

Vertical Section

- Increased viscosity helps
- Laminar flow acceptable

In the vertical, flow is parallel to gravity so particles are continuously re-entrained.

Horizontal Section

- Increased <u>viscosity hurts</u>
- Laminar flow drops solids to low side of liner
- High velocity and low viscosity allows turbulence
 Particles settle out quickly without turbulence

Water at 500 lpm erodes the dune at 2 m/min. Gel does NOTHING!

Dunes are created by improper fluid rheology

Optimizing Rheology

Water

Low viscosity fluid (~1 cP)

Friction Reducers

- Long chain polymers
- Low viscosity (~2-5 cP)
- Designed to suppress turbulence at the tubing wall only

Gels

- Guar based polymer linear gel
- High viscosity (~20-60 cP)
- Designed to keep solids entrained, difficult to pump into the turbulent flow regime
- Degrades with temperature

Rheology Control System

- Proprietary System comprising of:
 - Patented Inline Mixers
 - Patented Dual Flow Loops
 - Chemicals
 - Real time monitoring and optimization of fluid rheology.

Rheology Control System

- Addresses major concerns about coiled tubing operations
- Consistency in pressure control
- Optimization of chemical usage

- Optimization of Rheological metrics for debris removal
- Adaptability and Flexibility
 without compromising accuracy
- Trained Fluid Engineers on site.

NO GEL USED

Case History 1

- TD>5200mKB; TD/TVD>2
- 139.7mm Casing w/20 Plugs
- 60.3mm CT
- 73mm BHA
- 2 Runs
- As little as 29mins spent per plug

Case History 2

- TD>5100mKB; TD/TVD>2
- 139.7mm Casing w/21 Plugs
- 60.3mm CT
- 73mm BHA
- 2 Runs
- As little as 31mins per plug
- Motor failure after Plug 18

And More...

- >60% reduction in cost per plug
- 50-70% reduction in drill time per plug
- 50-70% reduction in chemical usage
- Improved solids transportation

Conclusion

Summary

OPTIMIZE

THANK YOU

Case History

- TD>5100mKB; TD/TVD>2
- 139.7mm Casing w/20
 Plugs
- 60.3mm CT
- 88.9mm BHA
- 4 Runs
- Avg. 63mins spent per plug
- BD vs. Ported Sub.

